IBM Team at NTCIR-10 RITE2: Textual Entailment Using Temporal Dimension Reduction

نویسندگان

  • Masaki Ohno
  • Yuta Tsuboi
  • Hiroshi Kanayama
  • Katsumasa Yoshikawa
چکیده

Our system for the Japanese BC/EXAM subtasks in NTCIR10 RITE2 is an extension of our previous system for NTCIR9 RITE. The new techniques are (1) Case-aware noun phrase matching using ontologies: The motivation of the feature is to capture finer syntactic structures than simple word matching. We uses ontologies to allow flexible matching of noun phrases. (2) Temporal expression matching after mapping historical entities to specific time intervals: The motivation of historical entity mapping is to expand the capabilities of the temporal expression matching. From the experimental results, we found that the coverage is more important than the accuracy in the temporal entity mapping. The scores of the formal runs were 74.9% (accuracy in BC) and 64.5% (accuracy in EXAM), which outperformed the baselines provided by the organizer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-10 RITE2

In this paper, we describe the IMTKU (Information Management at TamKang University) textual entailment system for recognizing inference in text at NTCIR-10 RITE-2 (Recognizing Inference in Text). We proposed a textual entailment system using a hybrid approach that integrate semantic features and machine learning techniques for recognizing inference in text at NTCIR-10 RITE-2 task. We submitted ...

متن کامل

TKDDI group at NTCIR10-RITE2: Recognizing Texual Entailment Based on Dependency Structure Alignment

This paper discribes the TKDDI system which participated in NTCIR10-RITE2. We propose a method for recognizing textual entailment by not using only word alignment, but also using syntactic dependency structure alignment. Entailment can then be recognized by the overlap of the dependency structures. Our system achieved a macro f1 of 63.83 on JA-BC, 49.08 on JA-ExamBC and 74.00 on JAUnitTest.

متن کامل

Expanded Dependency Structure based Textual Entailment Recognition System of NTTDATA for NTCIR10-RITE2

This paper describes NTT DATA’s recognizing textual entailment(RTE) systems for NTCIR10 RITE2. We participate in four Japanese tasks, BC Subtask, Unit Test, Exam BC and Exam Search[5]. Our approach uses a ratio with the same semantic relations between words. It is necessary to recognize two semantic viewpoints, which are the semantic relation and the meaning between words in a sentence, in orde...

متن کامل

KitAi: Textual Entailment Recognition System for NTCIR-10 RITE2

This paper describes Japanese textual entailment recognition systems for NTCIR-10 RITE2. The tasks that we participated in are the Japanese BC subtask and the ExamBC subtask. Our methods are based on some machine learning techniques with surface level, syntax and semantic features. We use two ontologies, the Japanese WordNet and Nihongo-Goi-Taikei, and Hierarchical Directed Acyclic Graph (HDAG)...

متن کامل

EHIME Textual Entailment System Using Markov Logic in NTCIR-10 RITE-2

This paper reports the methods used by the EHIME team for textual entailment recognition in NTCIR-10, RITE-2. We participated in the Japanese BC subtask and Japanese MC subtask. We used Markov logic to infer textual entailment relations. In our Markov logic network, words and hyponyms are used as features.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013